Topical Prostaglandin Analogue Drugs Inhibit Adipocyte Differentiation

نویسنده

  • Jae Woo Kim
چکیده

PURPOSE To investigate the effects of topical prostaglandin analogue drugs on the differentiation of adipocytes. METHODS Differentiation of 3T3-L1 preadipocytes was induced with isobutylmethylxanthine, dexamethasone, and insulin. 3T3-L1 cells were exposed to 0.008, 0.08, 0.2 µM of latanoprost and travoprost. Reverse transcription polymerase chain reaction for mRNA expression of lipoprotein lipase and peroxisome proliferator-activated receptor γ 2 (PPARγ2), and glycerol-3-phosphate dehydrogenase (G3PDH) assays were performed to examine the effects on early and late differentiation, respectively. Also, glycerol assays were done to evaluate the effect of prostaglandin analogues on lipolysis after differentiation. RESULTS Both prostaglandin analogues inhibited differentiation of preadipocytes. Topical prostaglandin analogues significantly decreased G3PDH activity, a marker of late differentiation. However, topical prostaglandin analogues did not change mRNA expressions of lipoprotein lipase and PPARγ2, markers of early differentiation. The activities of the early markers of differentiation were not changed significantly before and after growth arrest. Compared to latanoprost, travoprost decreased G3PDH activity more significantly (p < 0.05). Both prostaglandin analogues did not affect the lipolysis of differentiated adipocytes (p > 0.05). CONCLUSIONS Prostaglandin analogues display an inhibitory effect on the differentiation of adipocytes when the cells start to differentiate especially in the late stage of differentiation. Thus, commercial topical prostaglandin analogues may decrease the fat contents of eyelids.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Selective cyclo-oxygenase-2 inhibitors impair adipocyte differentiation through inhibition of the clonal expansion phase.

Selective cyclo-oxygenase-2 (COX-2) inhibitors are nonsteroidal antiinflammatory drugs used in the management of inflammatory diseases. We demonstrate here that inhibition of the COX-2 enzyme impairs adipocyte differentiation. The inhibition of adipogenesis occurs in the early clonal expansion phase. In particular, COX-2 inhibition limits cell cycle reentry required before terminal adipocyte di...

متن کامل

Arachidonic acid-dependent gene regulation during preadipocyte differentiation controls adipocyte potential[S]

Arachidonic acid (AA) is a major PUFA that has been implicated in the regulation of adipogenesis. We examined the effect of a short exposure to AA at different stages of 3T3-L1 adipocyte differentiation. AA caused the upregulation of fatty acid binding protein 4 (FABP4/aP2) following 24 h of differentiation. This was mediated by the prostaglandin F(2α) (PGF(2α)), as inhibition of cyclooxygenase...

متن کامل

Coordinate functional regulation between microsomal prostaglandin E synthase-1 (mPGES-1) and peroxisome proliferator-activated receptor γ (PPARγ) in the conversion of white-to-brown adipocytes.

Peroxisome proliferator-activated receptor γ (PPARγ) is a ligand-activated nuclear receptor and a master regulator of adipogenesis. Microsomal prostaglandin E (PGE) synthase-1 (mPGES-1) is an inducible enzyme that couples with cyclooxygenase-2 for the biosynthesis of PGE2. In this study we demonstrate the existence of a coordinate functional interaction between PPARγ and mPGES-1 in controlling ...

متن کامل

Prostaglandin E₂-EP4 signaling suppresses adipocyte differentiation in mouse embryonic fibroblasts via an autocrine mechanism.

The prostaglandin (PG) receptors EP4 and FP have the potential to exert negative effects on adipogenesis, but the exact contribution of endogenous PG-driven receptor signaling to this process is not fully understood. In this study, we employed an adipocyte differentiation system from mouse embryonic fibroblasts (MEF) and compared the effects of each PG receptor-deficiency on adipocyte different...

متن کامل

PPAR-γ Ligands Repress TGFβ-Induced Myofibroblast Differentiation by Targeting the PI3K/Akt Pathway: Implications for Therapy of Fibrosis

Transforming growth factor beta (TGFβ) induced differentiation of human lung fibroblasts to myofibroblasts is a key event in the pathogenesis of pulmonary fibrosis. Although the typical TGFβ signaling pathway involves the Smad family of transcription factors, we have previously reported that peroxisome proliferator-activated receptor-γ (PPAR-γ) ligands inhibit TGFβ-mediated differentiation of h...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 28  شماره 

صفحات  -

تاریخ انتشار 2014